Combining Case-Based Reasoning and Reinforcement Learning for Unit Navigation in Real-Time Strategy Game AI

نویسندگان

  • Stefan Wender
  • Ian D. Watson
چکیده

This paper presents a navigation component based on a hybrid case-based reasoning (CBR) and reinforcement learning (RL) approach for an AI agent in a real-time strategy (RTS) game. Spatial environment information is abstracted into a number of influence maps. These influence maps are then combined into cases that are managed by the CBR component. RL is used to update the case solutions which are composed of unit actions with associated fitness values. We present a detailed account of the architecture and underlying model. Our model accounts for all relevant environment influences with a focus on two main subgoals: damage avoidance and target approximation. For each of these subgoals, we create scenarios in the StarCraft RTS game and look at the performance of our approach given different similarity thresholds for the CBR part. The results show, that our navigation component manages to learn how to fulfill both sub-goals given the choice of a suitable similarity threshold. Finally, we combine both subgoals for the overall navigation component and show a comparison between the integrated approach, a random action selection, and a target-selection-only agent. The results show that the CBR/RL approach manages to successfully learn how to navigate towards goal positions while at the same time avoiding enemy attacks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combining Case-Based Reasoning and Reinforcement Learning for Tactical Unit Selection in Real-Time Strategy Game AI

This paper presents a hierarchical approach to the problems inherent in parts of real-time strategy games. The overall game is decomposed into a hierarchy of sub-problems and an architecture is created that addresses a significant number of these through interconnected machinelearning (ML) techniques. Specifically, individual modules that use a combination of case-based reasoning (CBR) and rein...

متن کامل

Integrating Case-Based Reasoning with Reinforcement Learning for Real-Time Strategy Game Micromanagement

This paper describes the conception of a hybrid Reinforcement Learning (RL) and Case-Based Reasoning (CBR) approach to managing combat units in strategy games. Both methods are combined into an AI agent that is evaluated by using the real-time strategy (RTS) computer game StarCraft as a test bed. The eventual aim of this approach is an AI agent that has the same actions and information at its d...

متن کامل

Transfer Learning in Real-Time Strategy Games Using Hybrid CBR/RL

The goal of transfer learning is to use the knowledge acquired in a set of source tasks to improve performance in a related but previously unseen target task. In this paper, we present a multilayered architecture named CAse-Based Reinforcement Learner (CARL). It uses a novel combination of Case-Based Reasoning (CBR) and Reinforcement Learning (RL) to achieve transfer while playing against the G...

متن کامل

An Adaptive Learning Game for Autistic Children using Reinforcement Learning and Fuzzy Logic

This paper, presents an adapted serious game for rating social ability in children with autism spectrum disorder (ASD). The required measurements are obtained by challenges of the proposed serious game. The proposed serious game uses reinforcement learning concepts for being adaptive. It is based on fuzzy logic to evaluate the social ability level of the children with ASD. The game adapts itsel...

متن کامل

Hierarchical Reinforcement Learning on the Virtual Battlefield

This paper investigates the potential of flat and hierarchical reinforcement learning (HRL) for solving problems within strategy games. A HRL method, Max-Q, is applied to a unit transportation task modelled within a simplified, discrete real-time strategy game engine, and its performance compared to that of flat Q-learning. It is shown that reinforcement learning approaches, and especially hier...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014